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Introduction

Tumor-Associated Macrophages (TAMs) play an important role in tumor development,
modulation of neoangiogenesis, immune suppression, and metastasis. A high infiltration of
macrophages in the tumor is also often correlated with a poor prognosis in several types of
cancer. Therefore, they became an attractive target for cancer immunotherapies. Several
macrophage-targeting approaches in anticancer therapy are under development, including TAM
depletion, inhibition of new TAM differentiation, or re-education of TAM activation for cancer cell
phagocytosis.

Jargeting TAMs for cancer treatment
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Factors regulating TAMs

From Pan et al., Front. Immunol., 2020

In order to better evaluate and support the pre-clinical development of novel TAM-targeting
strategies, we implemented a large panel of in vitro assays and in vivo models:
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Antibody-dependent cellular phagocytosis (ADCP) has been used to demonstrate a crucial
mechanism of action of several antibody (Ab)-based therapies targeting macrophages.

Some of these Ab (including anti-CSF1R) have been tested in syngeneic in vivo tumor models

We demonstrated that the site of tumor implantation in mice (PAN-02, subcutaneous vs
orthotopic) could impact the macrophage polarization (M1 vs M2). Differences in the ratio of
M1 and M2 subtypes infiltrating the PAN-02 murine pancreatic tumors were observed

Anti-CSF1R antibodies induced a slight reduction in the tumor mass of Renca murine kidney
tumor by eliminating TAMs, but not in other syngeneic tumor models like MC38

In an orthotopic Hepal-6 murine liver cancer model, we showed high antitumor efficacy of
compounds targeting the STAT6 pathway by reprogramming immunosuppressive TAMs into an
M1 phenotype that promotes the induction of a cytotoxic immune response.

For compounds displaying no cross-reactivity with murine target, we developed models and
characterized the TAMs in breast, colon, melanoma and head & neck PDX and CDX tumors in
different huCD34-engrafted mouse models.

Conclusion

We designed a comprehensive preclinical platform to support the development of TAM-targeting
therapies.

IN VITRO ASSAYS

Biochemical assays
- Cytokine profiling

IN VIVO MODELS

Syngeneic models
- MoA demonstration
- Complete murine immune system
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Cellular assays TO SUPPORT )

- Compound efficacy PRECLINICAL DEVELOPMENT Xenogenic models

- ADCP evaluation "J OF TAM-TARGETING // ; - CDX/PDX

- CDC evaluation ~
- Presence of NK cells and macrophages
- M2 polarization inhibition THERAPIES T

Humanized mouse models
Immunophenotyping - Various hosts & tumors
- IHC C} - Hematopoietic stem cells (hCD34)
- Flow cytometry - MoA demonstration (compound with
no murine cross reactivity)
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Experiments

« In vitro assay for evaluating ADCP of antibodies « In vitro assay for evaluating CDC
of antibodies

Trastuzumab induced antibody-dependent cell phagocytosis against Her2
positive NCI-N87 cells but not against Her2 negative MCF-7 cells (flow cytometry Rituximab

This ADCP assay is available with human and murine macrophages or
neutrophils

induced complement dependent
analysis). cytotoxicity (Raji cell line, 51Cr release assay)
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Monocytes isolation from human buffy coat and 7-day differentiation in hGM-CSF Loading of target Raji cells with 45 ug Na, °'CrO, solution
supplemented RPMI medium Treatment with negative IgG1l or Rituximab (3 doses) and
Staining of target tumor cells with Calcein-AM, treatment with negative IgG1k or Trastuzumab incubation with human serum, inactivated or not for 3h

(15 ug/ml) and co-culture with human macrophages (E/T ratio 25:1, 3h)

(spontaneous °ICr release evaluated by incubation with cell

culture medium and maximum release by incubation with 4%

Triton, X-100) .
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e In vivo Subcutaneous vs orthotopic implantation of PAN02 pancreatic murine tumor

impacts the polarization of tumor macrophages (M1 vs M2)
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¢ TAMs elimination by in vivo anti-CSF1R treatment in Renca murine kidney tumors or MC38

colon murine tumors

RENCA _ Anti-CSF1R treatment show a slight anti-tumor efficacy in Renca tumors but did not show
'8G Anti-CSF1 any efficacy in MC38 tumor model despite significant TAM depletion
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OncoTAM, a comprehensive preclinical platform to explore Macrophages as key drivers of cancer
progression and develop new therapies against Tumor-Associated-Macrophages
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e C57BL/6 mice bearing orthotopic Hepal-6 tumors in the liver, treated with systemic
administration of exoASO-STAT6 result in a potent monotherapy anti-tumor response
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From Kamerkar S. et al., Sci Adv, 2022, in vivo work done at Oncodesign Services
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ex0ASOSTAT6 results in effective re-programming to an M1 phenotype that
promotes the induction of a cytotoxic immune response and an antitumoral TME
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(10mg/kg)(BIW).

with exosomes only, exo0ASO-Scramble
(12mg)(TIW, 2weeks), or exoASOSTAT6-2039
(PTGFRN++) (12mg)(TIW, 2 weeks) or IP with anti-
CSF1R (10mg/kg)(DIW) or anti-PD-1

C. Quantification of F4/80 (macrophage) and iNOS

expression, performed by immunofluorescence
and IHC (immunohistochemistry) respectively, in

Hepal-6 tumor sections

D. Representative images and quantification of ASO
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ASO/INOS/IBA1

localization in iNOS-positive, IBA1+ (M1), and
iNOS-negative, IBA1+ (M2), macrophages.

ASO localization
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¢ Immune-humanized mice to monitor the MOA of compounds on human macrophages

Myeloid lineage engraftment is enhanced by the use of immunodeficient mice expressing specific human cytokines such as NOG-EXL and
BRGSF mice

Mouse host Hu. Premium features
Method

Human Immune cells reconstitution
Tcell Bcell Myeloid NK cell

* Express human GM-CSF and human IL-3
NOG-EXL hHSC * Increased myeloid populations
* Long term stable engraftment, no GvHD
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@ Optimal level of presence

* hDC boost on demand by hFLT3L injection
BRGSF hHSC * Activity of complement (C5)
* Suitable for infection & vaccination studies

Q Potential level of presence

® O

* Lack expression of functional mouse FcyRs

* Lack activity of endogenous ADCC

* Suitable for assessment of antibody-based
therapies

NOG-FcyR7~ hHSC
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Immunophenotypical characterization of 2 xenograft models in hCD34-engrafted NOG-EXL or BRGSF mice

A. Breast xenograft/HUNOG-EXL
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All animal procedures were approved by the Animal
Care and Use Committee of Oncodesign Services
(Oncomet - CNREEA agreement N° 91)

human leukocytes (% of m+hCD45+)

human myeloid cells (% of hCD45+)

human macrophages (% of hCD45+)

human T cells (% of hCD45+)

human CD8 T cells (% of hCD3+)

human M1 macrophages (% of macrophages)
human M2 macrophages (% of macrophages)
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Expressed as % of h+m hCD45+ cells

human leukocytes (% of m + hCD45+ cells)

human myeloid cells (% of hCD45+) ->
human macrophages (% of hCD45+ cells)

human T cells (% of hCD45+ cells)

human CD8 T cells (% of hCD3+ cells)

* Expressed as % of h+m hCD45+ cells
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human leukocytes (% of m + hCD45+ cells)
human macrophages (% of hCD45+ cells)
human T cells (% of hCD45+ cells)

human CD8 T cells (% of hCD3+ cells)
human M1 macrophages (% of macrophages)
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human M2 macrophages (% of macrophages)
* Expressed as % of h+m hCD45+ cells
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Data demonstrated a
moderately high frequency of
macrophages within the tumor.

Immunophenotypical profile is
tumor and host- dependent

Mouse immune cells, which are
strickly from the myeloid
lineage, represent the dominant
myeloid population.

Others internal data indicate

that immune cell repertoire is
driven by the tumor
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