Neurological Disorders: Prepulse Inhibition
Prepulse inhibition is a pre-attentive process that has been shown to be deficient in patients with schizophrenia. This reduced ability to filter out environmental stimuli may contribute to both positive and negative symptoms of the disease. This test has been successfully used to detect phenotypes in knockout mice. For example, impaired prepulse inhibition of startle response has been observed in DAT (dopamine transporter) KO mice (Ralph et al., 2001). Anti-psychotics can ameliorate some deficits in prepulse inhibition, therefore genetic inhibition of a target that can increase prepulse inhibition may presage a small-molecule therapeutic that can help patients with their disorder. The prepulse inhibition of the startle response assay is an automated measure of the startle response both with and without various intensities of prepulses. Targets whose genetic inhibition produces changes in prepulse inhibition without changes in the startle response itself may be excellent for the discovery of new therapeutics. This test employs a San Diego Instruments SR-Lab startle response system. Prepulse inhibition of the acoustic startle reflex occurs when a loud 120 decibel (dB) startle-inducing tone is preceded by a softer (prepulse) tone. The prepulse inhibition paradigm consists of six different trial types (70 dB background noise, 120 dB alone, 74+120 dB at postpartum day 4, 78+120 dB at postpartum day 8, 82+120 dB at postpartum day 12, and 90+120 dB at postpartum day 20) each repeated in pseudorandom order six times for a total of 36 trials. The maximum response to the stimulus (Vmax) is averaged for each trial type. The percentage inhibition of the animal's response to the startle stimulus is calculated for each prepulse intensity and then graphed. This test is being used increasingly as a model of human schizophrenia and a test for antipsychotic drugs.