References:
1. Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; Chen, H.-D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.-D.; Liu, M.-Q.; Chen, Y.; Shen, X.-R.; Wang, X.; Zheng, X.-S.; Zhao, K.; Chen, Q.-J.; Deng, F.; Liu, L.-L.; Yan, B.; Zhan, F.-X.; Wang, Y.-Y.; Xiao, G.-F.; Shi, Z.-L. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature. 2020, 579 (7798), 270-273.
2. Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T. S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; Müller, M. A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020.
3. Tseng, C.-T. K.; Huang, C.; Newman, P.; Wang, N.; Narayanan, K.; Watts, D. M.; Makino, S.; Packard, M. M.; Zaki, S. R.; Chan, T.-S.; Peters, C. J. Severe Acute Respiratory Syndrome Coronavirus Infection of Mice Transgenic for the Human Angiotensin-Converting Enzyme 2 Virus Receptor. Journal of Virology 2007, 81 (3), 1162-1173.
4. Yoshikawa, N.; Yoshikawa, T.; Hill, T.; Huang, C.; Watts, D. M.; Makino, S.; Milligan, G.; Chan, T.; Peters, C. J.; Tseng, C.-T. K. Differential Virological and Immunological Outcome of Severe Acute Respiratory Syndrome Coronavirus Infection in Susceptible and Resistant Transgenic Mice Expressing Human Angiotensin-Converting Enzyme 2. Journal of Virology 2009, 83 (11), 5451-5465.
5. Imai, Y.; Kuba, K.; Rao, S.; Huan, Y.; Guo, F.; Guan, B.; Yang, P.; Sarao, R.; Wada, T.; Leong-Poi, H.; Crackower, M. A.; Fukamizu, A.; Hui, C.-C.; Hein, L.; Uhlig, S.; Slutsky, A. S.; Jiang, C.; Penninger, J. M. Angiotensin-Converting Enzyme 2 Protects from Severe Acute Lung Failure. Nature 2005, 436 (7047), 112-116.
6. Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; Bao, L.; Zhang, B.; Liu, G.; Wang, Z.; Chappell, M.; Liu, Y.; Zheng, D.; Leibbrandt, A.; Wada, T.; Slutsky, A. S.; Liu, D.; Qin, C.; Jiang, C.; Penninger, J. M. A Crucial Role of Angiotensin Converting Enzyme 2 (ACE2) in SARS Coronavirus-Induced Lung Injury. Nature Medicine 2005, 11 (8), 875-879.
7. Iwata-Yoshikawa, N.; Okamura, T.; Shimizu, Y.; Hasegawa, H.; Takeda, M.; Nagata, N. TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection. Journal of Virology 2019, 93 (6).
8. Li, Y.; Zhang, Z.; Yang, L.; Lian, X.; Xie, Y.; Li, S.; Xin, S.; Cao, P.; Lu, J. The MERS-CoV Receptor DPP4 as a Candidate Binding Target of the SARS-CoV-2 Spike. iScience2020, 23 (6), 101160.
9. Agrawal, A. S.; Garron, T.; Tao, X.; Peng, B.-H.; Wakamiya, M.; Chan, T.-S.; Couch, R. B.; Tseng, C.-T. K. Generation of a Transgenic Mouse Model of Middle East Respiratory Syndrome Coronavirus Infection and Disease. Journal of Virology 2015, 89 (7), 3659-3670.
10. Li, K.; Wohlford-Lenane, C. L.; Channappanavar, R.; Park, J.-E.; Earnest, J. T.; Bair, T. B.; Bates, A. M.; Brogden, K. A.; Flaherty, H. A.; Gallagher, T.; Meyerholz, D. K.; Perlman, S.; Mccray, P. B. Mouse-Adapted MERS Coronavirus Causes Lethal Lung Disease in Human DPP4 Knockin Mice. Proceedings of the National Academy of Sciences 2017, 114 (15).
11. Fan, C.; Wu, X.; Liu, Q.; Li, Q.; Liu, S.; Lu, J.; Yang, Y.; Cao, Y.; Huang, W.; Liang, C.; Ying, T.; Jiang, S.; Wang, Y. A Human DPP4-Knockin Mouse's Susceptibility to Infection by Authentic and Pseudotyped MERS-CoV. Viruses 2018, 10 (9), 448.
12. Kuo, C.-L.; Pilling, L. C.; Atkins, J. L.; Masoli, J. A.; Delgado, J.; Kuchel, G. A.; Melzer, D. Apoe E4 Genotype Predicts Severe Covid-19 In The Uk Biobank Community Cohort. 2020.
13. Tudorache, I. F.; Trusca, V. G.; Gafencu, A. V. Apolipoprotein E - A Multifunctional Protein with Implications in Various Pathologies as a Result of Its Structural Features. Computational and Structural Biotechnology Journal 2017, 15, 359-365.
14. Rodriguez, G. A.; Tai, L. M.; Ladu, M.; Rebeck, G. Human APOE4 Increases Microglia Reactivity at Aβ Plaques in a Mouse Model of Aβ Deposition. Journal of Neuroinflammation2014, 11 (1), 111.
15. Gale, S.C.; Gao, L.; Mikacenic, C.; Coyle, S.M.; Rafaels, N.; Murray Dudenkov, T.; et al. APOepsilon4 is associated with enhanced in vivo innate immune responses in human subjects. The Journal of Allergy and Clinical Immunology 2014, 134 (1), 127-34.
16. Hogan, R. J.; Gao, G.; Rowe, T.; Bell, P.; Flieder, D.; Paragas, J.; Kobinger, G. P.; Wivel, N. A.; Crystal, R. G.; Boyer, J.; Feldmann, H.; Voss, T. G.; Wilson, J. M. Resolution of Primary Severe Acute Respiratory Syndrome-Associated Coronavirus Infection Requires Stat1. Journal of Virology 2004, 78 (20), 11416-11421.
17. Frieman, M. B.; Chen, J.; Morrison, T. E.; Whitmore, A.; Funkhouser, W.; Ward, J. M.; Lamirande, E. W.; Roberts, A.; Heise, M.; Subbarao, K.; Baric, R. S. SARS-CoV Pathogenesis Is Regulated by a STAT1 Dependent but a Type I, II and III Interferon Receptor Independent Mechanism. PLoS Pathogens 2010, 6 (4).
18. Graham, R. L.; Becker, M. M.; Eckerle, L. D.; Bolles, M.; Denison, M. R.; Baric, R. S. A Live, Impaired-Fidelity Coronavirus Vaccine Protects in an Aged, Immunocompromised Mouse Model of Lethal Disease. Nature Medicine 2012, 18 (12), 1820-1826.
19. Subbarao, K.; Roberts, A. Is There an Ideal Animal Model for SARS? Trends in Microbiology 2006, 14 (7), 299-303.
20. Roberts, A.; Paddock, C.; Vogel, L.; Butler, E.; Zaki, S.; Subbarao, K. Aged BALB/c Mice as a Model for Increased Severity of Severe Acute Respiratory Syndrome in Elderly Humans. Journal of Virology 2005, 79 (9), 5833-5838.
21. Day, C. W.; Baric, R.; Cai, S. X.; Frieman, M.; Kumaki, Y.; Morrey, J. D.; Smee, D. F.; Barnard, D. L. A New Mouse-Adapted Strain of SARS-CoV as a Lethal Model for Evaluating Antiviral Agents in Vitro and in Vivo. Virology 2009, 395 (2), 210-222.
22. Dinnon, K. H.; Leist, S. R.; Schäfer, A.; Edwards, C. E.; Martinez, D. R.; Montgomery, S. A.; West, A.; Yount, B. L.; Hou, Y. J.; Adams, L. E.; Gully, K. L.; Brown, A. J.; Huang, E.; Bryant, M. D.; Choong, I. C.; Glenn, J. S.; Gralinski, L. E.; Sheahan, T. P.; Baric, R. S. A Mouse-Adapted SARS-CoV-2 Model for the Evaluation of COVID-19 Medical Countermeasures. 2020.
23. Gu, H.; Chen, Q.; Yang, G.; He, L.; Fan, H.; Deng, Y.-Q.; Wang, Y.; Teng, Y.; Zhao, Z.; Cui, Y.; Li, Y.; Li, X.-F.; Li, J.; Zhang, N.; Yang, X.; Chen, S.; Zhao, G.; Wang, X.; Luo, D.; Wang, H.; Yang, X.; Li, Y.; Han, G.; He, Y.; Zhou, X.; Geng, S.; Sheng, X.; Jiang, S.; Sun, S.; Qin, C.-F.; Zhou, Y. Rapid Adaptation of SARS-CoV-2 in BALB/c Mice: Novel Mouse Model for Vaccine Efficacy. 2020.
24. Roberts, A.; Lamirande, E. W.; Vogel, L.; Jackson, J. P.; Paddock, C. D.; Guarner, J.; Zaki, S. R.; Sheahan, T.; Baric, R.; Subbarao, K. Animal Models and Vaccines for SARS-CoV Infection. Virus Research 2008, 133 (1), 20-32.
25. Feng, Z.; Wang, Y.; Qi, W. The Small Intestine, an Underestimated Site of SARS-CoV-2 Infection: From Red Queen Effect to Probiotics. 2020.
26. Trammell RA, Toth LA. Markers for predicting death as an outcome for mice used in infectious disease research. Comp Med. 2011 Dec;61(6):492-8.
27. Faber, M.; Lamirande, E. W.; Roberts, A.; Rice, A. B.; Koprowski, H.; Dietzschold, B.; Schnell, M. J. A Single Immunization with a Rhabdovirus-Based Vector Expressing Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) S Protein Results in the Production of High Levels of SARS-CoV-Neutralizing Antibodies. Journal of General Virology 2005, 86 (5), 1435-1440.
28. Okada, M.; Okuno, Y.; Hashimoto, S.; Kita, Y.; Kanamaru, N.; Nishida, Y.; Tsunai, Y.; Inoue, R.; Nakatani, H.; Fukamizu, R.; Namie, Y.; Yamada, J.; Takao, K.; Asai, R.; Asaki, R.; Kase, T.; Takemoto, Y.; Yoshida, S.; Peiris, J.; Chen, P.-J.; Yamamoto, N.; Nomura, T.; Ishida, I.; Morikawa, S.; Tashiro, M.; Sakatani, M. Development of Vaccines and Passive Immunotherapy against SARS Corona Virus Using SCID-PBL/Hu Mouse Models. Vaccine2007, 25 (16), 3038-3040.